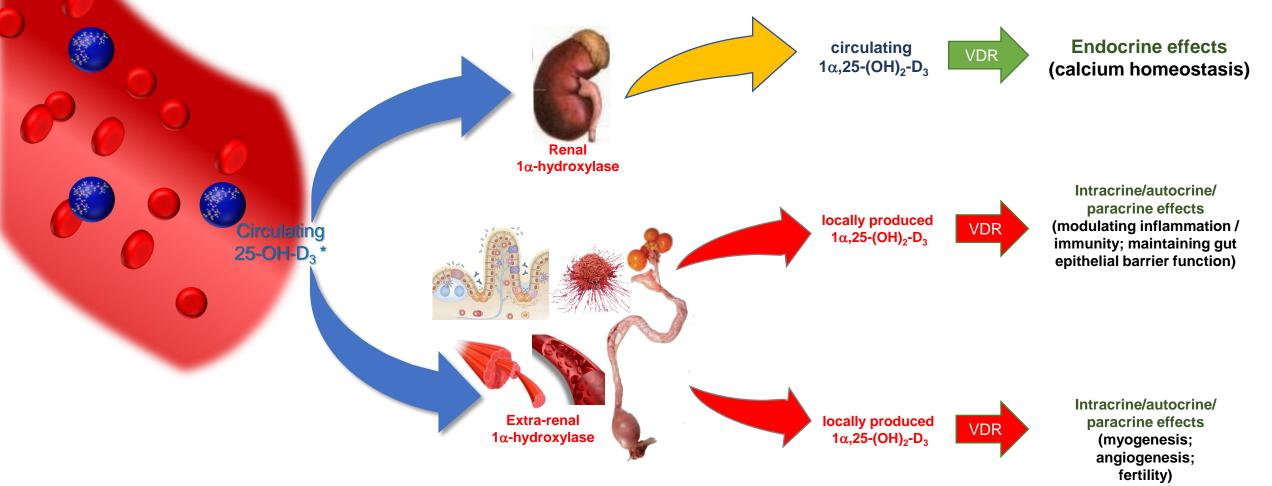

25-OH-D₃: An Indispensable Tool to Managing Antibiotic Free Feeding Programs for Commercial Broilers

T. K. Chung¹ and Y. T. Wang²

¹DSM Nutritional Products Asia Pacific ²DSM Nutritional Products North America

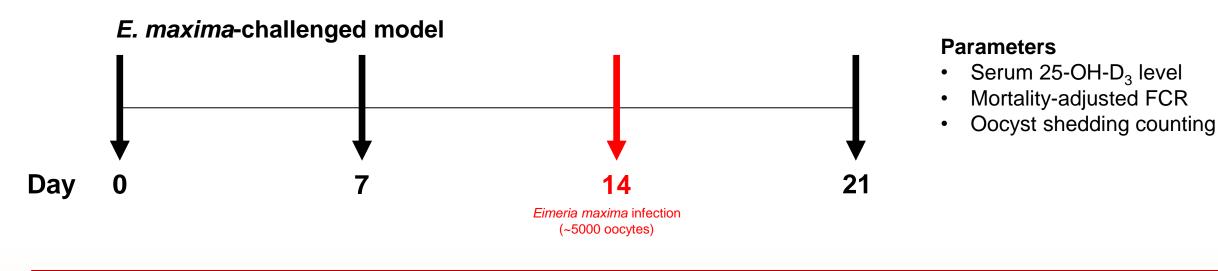
Road Map

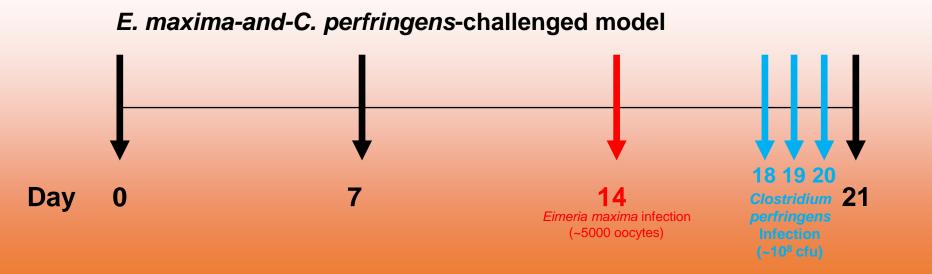
- What is 25-OH-D₃ and its biological effects?
- Experimental disease-challenged models
 - E. maxima
 - E. maxima and C. perfringens combined
- Treatment design and results
- Proposed mechanism of action of 25-OH-D₃
- Conclusion


25-0H-D₃

- First metabolite of vitamin D₃ metabolism
- Industrially produced

СΗ


- Added to animal diets as a regulatory approved feed additive
- Relatively more polar molecule
- Absorption less dependent on bile acids and micelle formation and less affected by intestinal insults
- Post-absorption, bypassing liver and entering circulation directly (circulating 25-OH-D₃)


Partitioning of circulating 25-OH-D₃ into use for endocrine and / or intracrine/autocrine/paracrine effects

*Availability of circulating 25-OH-D₃ level is the first limiting factor!!!

Diseased-Challenged Models

Parameters

- Serum 25-OH-D₃ level
- Mortality-adjusted FCR
- Anti-inflammatory cytokine gene expression (jejunum)

Treatment Design

	Disease-challenged models	Treatment group	Treatment	<i>E. maxima</i> - challenged	<i>C. perfringens</i> - challenged	25-OH-D3 (mcg/kg diet)
	E. maxima-challenged model	CO	Positive Control	No	No	No
		C1	Negative Control	Yes	No	No
Day		C1-LD	Negative Control	Yes	No	34.5
		C1-HD	Negative Control	Yes	No	69.0
ł	. maxima-and-C. perfringens-challenged model	CNE0	Positive Control	No	No	No
	7 14 Protein substantia (-Sidel conjunit) (-Sidel conjunit) (-Side	CNE1	Negative Control	Yes	Yes	No
Day 0		CNE1-LD	Negative Control	Yes	Yes	34.5
		CNE1-HD	Negative Control	Yes	Yes	69.0

- 512 Male Cobb 500 broilers
- 8 Treatments X 8 Replicates X 8 Birds per replicate
- Antibiotic-and-anticoccidial-free diets
- Petersime battery cages
- 21-day trial

Results: Serum 25-OH-D₃

Treatment group	Treatment	<i>E. maxima</i> - challenged	<i>C. perfringens</i> - challenged	25-OH-D₃ (mcg/kg diet)	Day 14 serum 25-OH-D ₃ (ng/mL)	Day 21 serum 25-OH-D ₃ (ng/mL)
CO	Positive Control	No	No	No	5.41 ^b	8.08 ^b
C1	Negative Control	Yes	No	No	5.81 ^b	2.09 ^c
C1-LD	Negative Control	Yes	No	34.5	25.06 ^a	13.26ª
C1-HD	Negative Control	Yes	No	69.0	26.48 ª	13.79ª
CNE0	Positive Control	No	No	No	6.75°	9.81ª
CNE1	Negative Control	Yes	Yes	No	6.89 ^c	1.55 ^b
CNE1-LD	Negative Control	Yes	Yes	34.5	25.51 ^b	8.78ª
CNE1-HD	Negative Control	Yes	Yes	69.0	31.08ª	11.25ª

- At Day 14 (i.e., before challenged), birds fed supplemental 25-OH-D₃ increased serum 25-OH-D₃ versus those fed without 25-OH-D₃.
- At Day 21 (i.e., post infection), serum 25-OH-D₃ was lowered in birds both fed with and without supplemental 25-OH-D₃.
- The magnitude of decrease in serum 25-OH-D3 was greater in the cocci-and NE-challenged birds than the cocci-challenged birds.
- Birds fed 69 mcg 25-OH-D₃ per kg diet maintained higher serum 25-OH-D₃ numerically than those fed 34.5 mcg 25-OH-D₃ per kg diet and those fed without 25-OH-D₃ at 7 days post infection.

Results: Mortality-adjusted feed conversion ratio

Treatment group	Treatment	<i>E. maxima</i> - challenged	<i>C. perfringens</i> - challenged	25-OH-D₃ (mcg/kg diet)	Day 21 mortality-adjusted FCR
CO	Positive Control	No	No	No	1.616
C1	Negative Control	Yes	No	No	2.011
C1-LD	Negative Control	Yes	No	34.5	2.089
C1-HD	Negative Control	Yes	No	69.0	1.958
CNE0	Positive Control	No	No	No	1.598
CNE1	Negative Control	Yes	Yes	No	2.213
CNE1-LD	Negative Control	Yes	Yes	34.5	2.161
CNE1-HD	Negative Control	Yes	Yes	69.0	2.122

In *E. maxima*-challenged and combined *E. maxima*-and *C. perfringens*-challenged models, birds fed high level of supplemental 25-OH-D₃ had respectively 13 and 4 points advantage of mortality-adjusted FCR over those fed low level of supplemental 25-OH-D₃ and respectively 5 and 9 points over those fed without 25-OH-D₃ (i.e., negative control).

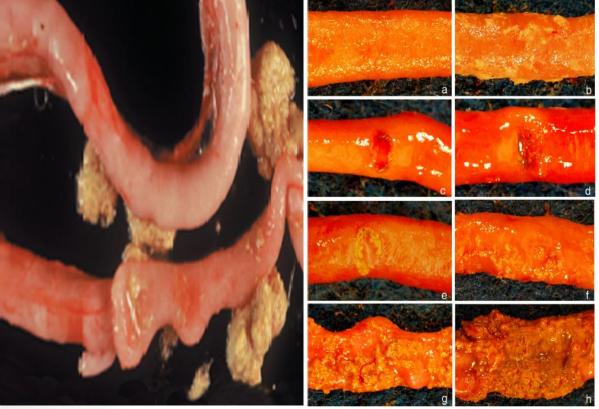
Results: E. maxima oocyst shedding

Treatment group	Treatment	<i>E. maxima</i> - challenged	C. perfringens- challenged	25-OH-D ₃ (mcg/kg diet)	Day 21 <i>E. Maxima</i> oocyst shedding (oocysts per gram)
C0	Positive Control	No	No	No	0 ^b
C1	Negative Control	Yes	No	No	121,869ª
C1-LD	Negative Control	Yes	No	34.5	150,725 ^a
C1-HD	Negative Control	Yes	No	69.0	105,211 ^{ab}
CNE0	Positive Control	No	No	No	Not determined
CNE1	Negative Control	Yes	Yes	No	Not determined
CNE1-LD	Negative Control	Yes	Yes	34.5	Not determined
CNE1-HD	Negative Control	Yes	Yes	69.0	Not determined

At Day 21 (i.e., 7 days post infection) under *E. maxima*-challenged conditions, oocyst shedding was significantly lower in birds fed 69 mcg 25-OH-D₃ per kg diet than those fed 34.5 mcg 25-OH-D₃ per kg diet and those fed without 25-OH-D₃.

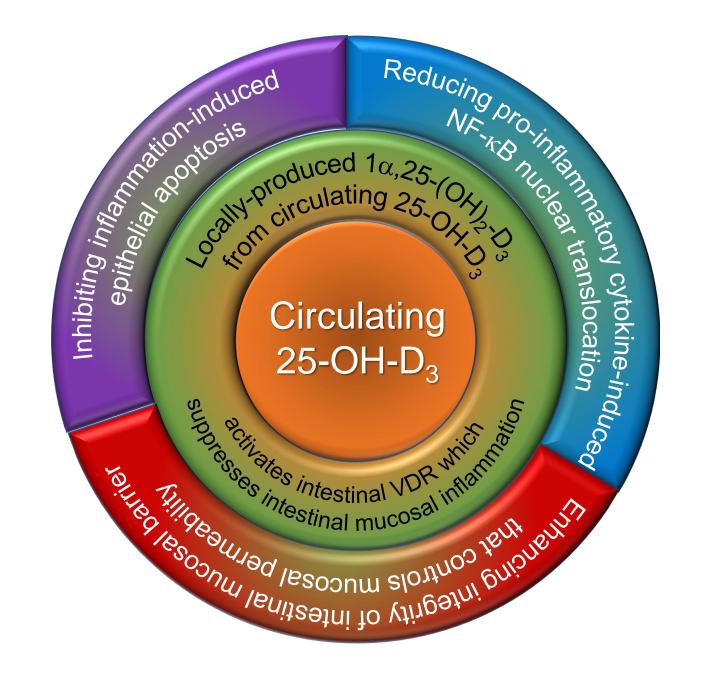
Results: IL-10 gene expression in jejunum

Treatment group	Treatment	<i>E. maxima</i> - challenged	<i>C. perfringens</i> - challenged	25-OH-D ₃ (mcg/kg diet)	Gene expression of IL-10
C0	Positive Control	No	No	No	Not determined
C1	Negative Control	Yes	No	No	Not determined
C1-LD	Negative Control	Yes	No	34.5	Not determined
C1-HD	Negative Control	Yes	No	69.0	Not determined
CNE0	Positive Control	No	No	No	24.081 ^b
CNE1	Negative Control	Yes	Yes	No	22.509 ^b
CNE1-LD	Negative Control	Yes	Yes	34.5	36.870ª
CNE1-HD	Negative Control	Yes	Yes	69.0	40.195 ^a


- IL-10 is anti-inflammatory cytokine and as such possesses anti-inflammatory activity which downregulates inflammatory response.
- Birds fed supplemental 25-OH D₃ up-regulated the gene expression of IL-10 when compared to those fed without 25-OH-D₃ (i.e., negative control).

Coccidia . . . Does not come Alone

Coccidiosis goes hand-in-hand with other gut diseases because it damages the gut mucosa and allows bacteria to enter causing secondary infections


Intestinal mucosal inflammation

E. maxima lesions

Necrotic enteritis lesions Shojadoost et al. Veterinary Research 2012, 43:74

25-OH-D₃, mechanism of action ???

Conclusion

- 25-OH-D₃ partially alleviated detrimental consequences of coccidiosis and clostridiosis.
- Higher levels of supplemental 25-OH-D₃ might be beneficial to birds subject to challenged condition of coccidiosis and clostridiosis.
- 25-OH-D3 may be considered as an indispensable feed additive to managing antibiotic-and-anticoccidial-free feeding programs for commercial broilers.